2019年11月25日学术报告通知
发布时间:2019-11-19   访问次数:1188   作者:

报告题目:Interface Engineering of Photocatalysts and Electrocatalysts Toward Efficient Solar/electricity Fuel Production

开始时间:2019-11-25  15:00-16:00

报告地点:商学院大楼 205

  人:南京大学钟苗研究员

  人:杨化桂 教授

备注:

个人简介:

钟苗,博士,南京大学现代工程与应用科学学院研究员。本科毕业于上海交通大学应用物理系,博士毕业于日本东京大学工学院机械工学系。其后在东京大学任日本学生振兴学会(JSPS)博士后及日本新能源产业技术开发机构(NEDO)特任研究员;在加拿大多伦多大学电子与计算机科学系任博士后研究员。主要从事太阳能光电转换器件、太阳能光分解水产氢,电催化还原二氧化碳等相关研究课题。第一作者共发表学术著作章节2章,主编学术书籍1本,日本和美国专利各1项。在J. Am. Chem. Soc., Angew. Chem., Energy Environ. Sci., Nat. Mater., Nat. Catalysis等学术期刊上发表论文30余篇。获得上海市优秀硕士毕业论文,日本第21届材料学会年轻科学家奖。

报告摘要:

能源短缺与环境污染是当前世界所面临的严峻挑战。利用地球上丰富的太阳能或利用太阳能、风能等产生的清洁电能,通过安全、温和的电化学手段,全分解水制氢或还原二氧化碳制燃料或高附加值化工原料,是解决当前能源与环境问题的有效手段之一。

在太阳光全分解水制氢部分,我们将以光阳极材料ZnO:GaNBiVO4Ta3N5为例,通过1)合成高质量的光电催化本体材料,2)构建表面异质结,3)助催化剂表面改性,的思路,分别实现了ZnO:GaNBiVO4Ta3N5单结条件下,高效率的太阳能到氢能转换,且具有较好的稳定性。在电催化还原二氧化碳部分,我们针对二氧化碳还原反应中关键碳碳偶联部分,通过理论计算和实验相结合的方式,合理设计和优化Cu基催化剂,实现了大电流密度下二氧化碳到乙烯的高选择性和能量效率。上述结果,可能对进一步实现高效率太阳能全分解水制氢和电催化还原二氧化碳制多碳提供参考。

 

报告题目:Advancing oxide photoelectrode performance by enhanced carrier transport towards standalone solar water splitting

开始时间:2019-11-25  16:00-17:00

报告地点:商学院大楼 205

  人:瑞士洛桑联邦理工学院潘林枫博士

  人:杨化桂 教授

备注:

About the speaker

Dr. Linfeng Pan

2019. 8-present     Postdoc in Ecole Polytechnique Fédérale de Lausanne, Switzerland.

2015. 7-2019. 7     Ph.D. in Ecole Polytechnique Fédérale de Lausanne, Switzerland

2012. 9-2015. 6     Master of Science in East China University of Science and Technology

2008. 9-2012. 6     Bachelor of Engineering in Nanjing Tech University

Abstract of the talk

As a scalable and sustainable technology for carbon-neutral production of hydrogen, solar-driven water splitting provides a means to address major concerns that have been raised over the security of our energy future. Nevertheless, even for the most technologically advanced solar-fuel systems, it is still challenging to simultaneously fulfill the requirements of being efficient, robust and scalable. Here, we show the recent development of one of the most promising oxide-based semiconducting photoelectrodes–cuprous oxide (Cu2O) photocathodes. We highlight the key steps that take Cu2O photoelectrodes towards being an efficient solar energy converter, which have advanced this field in our group. Using advanced thin film deposition techniques, conformal semiconductor layers are applied on nanostructured photo absorbers, which allows efficient charge separation, light harvesting and robust protection. In the latest progress gallium oxide that has suitable conduction band alignment with cuprous oxide has been applied as electron selective layer and achieved unprecedented overall performance. Finally, an all earth-abundant photocathode was demonstrated in alkaline electrolyte. Current and future research on regulating electronic properties of electron selective layers and new materials development for hole selective layers will also be presented.